Archive for octobre, 2018

BepiColombo, les instruments et les aspects techniques d’une mission hors du commun

vendredi, octobre 26th, 2018

Le groupe de BepiColombo pendant son encapsulation sous la coiffe d’Ariane 5. Crédit : ESA

La mission BepiColombo est formée principalement par deux orbiteurs : le MPO européen et le MMO japonais. Leurs objectifs sont différents mais ils partagent un but commun : celui de nous apprendre à mieux connaître la planète la plus proche du Soleil, Mercure. Cette mission a donc des objectifs sur des thèmes très divers :

-Formation et évolution de la planète: Déterminer comment s’est formée Mercure pour ultimement en apprendre plus sur les origines du système solaire ; déterminer comment Mercure a évolué depuis sa formation et améliorer notre connaissance sur l’évolution d’une planète proche de son étoile

-Structure du noyau et composition de la planète: En apprendre plus sur la structure interne de Mercure et notamment sur la proportion du noyau solide et celle du noyau liquide, en ayant préalablement vérifié la présence de ce dernier ; déterminer la composition chimique de Mercure qui semble être composée de fer de par sa densité et son champ magnétique mais n’en présente aucune trace lors d’analyses spectroscopiques

-Géologie de la surface et histoire des cratères: Déterminer si la planète est géologiquement active comme la Terre ou inactive comme Mars et le cas échéant si elle l’a été par le passé ; cartographier et dénombrer tous les cratères de Mercure

-Orbite: Utiliser la proximité du Soleil pour tester la théorie de la Relativité Générale d’Einstein, elle qui avait expliqué l’avance du périhélie de Mercure

-Magnétosphère: Déterminer comment est généré le champ magnétique de Mercure ainsi que la structure de celui-ci ; étudier les interactions entre le vent solaire et les différentes couches du champ magnétique mercurien afin de savoir si les phénomènes observables sur Terre se répètent là-bas (aurores polaires, ceintures de Van Allen, tempêtes de la magnétosphère, etc)

-Atmosphère: Etudier la structure, la formation et l’évolution de l’atmosphère de Mercure, très fine et très peu dense (composée uniquement d’une exosphère)

-Eau et glace: Déterminer si la glace à la surface de Mercure n’est composée que d’eau pure ou si elle est mélangée à d’autres matériaux ; mesurer l’éventuelle présence de molécules d’eau dans l’atmosphère mercurienne

-Environnement cosmique: Etudier in situ les poussières cosmiques laissées par les comètes dans l’espace interplanétaire et ainsi aider à mieux comprendre des processus se déroulant à proximité du Soleil comme les ondes de choc solaires, indétectables depuis la Terre

Equipement scientifique

Afin de réaliser tous ces objectifs divers, BepiColombo emporte un total de seize instruments scientifiques : onze sur le MPO et cinq sur le MMO. Ces instruments viennent de différents endroits d’Europe mais aussi du Japon pour quatre des cinq instruments à bord du MMO. Ces instruments, les voici :

-BELA: Pour BepiColombo Laser Altimeter, BELA est un altimètre laser. Il mesure avec une grande précision l’altitude d’un certain point sur la surface de Mercure afin de réaliser une carte topographique de la surface. BELA utilise un laser infrarouge d’une longueur d’onde de 1064nm et envoie des impulsions toutes les 0,1 secondes. 5 millisecondes après chaque émission, le rayon est reçu à nouveau par l’instrument grâce à un télescope de type Cassegrain (deux miroirs dont un percé en son centre et dont les axes optiques coïncident afin d’obtenir une image non pivotée) de 20cm de diamètre et d’ouverture f/5. Par rapport à la trace au sol de l’orbiteur, le faisceau laser est émis tous les 250m en latitude et chaque nouvelle orbite cause un décalage de 6km à l’équateur. Cet instrument a été fourni par l’Université de Berne en Suisse et l’Institut pour la recherche planétaire de la DLR, l’agence spatiale allemande, et est installé sur le MPO. Il pèse 12kg et consomme 36W d’électricité.

Instrument BELA. Crédit : ESA

-MPO-MAG: Le MPO-MAG fait partie de la suite de magnétomètre MERMAG (Mercury Magnetometer) dont fait également parti MMO-MGF à bord du MMO. MPO-MAG est situé au bout d’un mât sur le MPO. Cet instrument est constitué de deux magnétomètres positionnés à des distances différentes de la sonde afin de pouvoir mesurer le bruit parasite généré par les courants électriques et les aimants à bord de l’orbiteur. Ces deux magnétomètres ont une fréquence d’échantillonnage de 128Hz qui peut être réduite à 0,5Hz sur commande. Ils peuvent mesurer un champ magnétique sur une plage variable de ± 2000nT (nanoTeslas, l’unité représentant la densité de flux magnétique) avec une résolution de 2pT. Cet instrument a été développé par l’Université technique de Brunswick en Allemagne.

Instrument MPO-MAG. Crédit : ESA

-ISA: Cet instrument nommé ISA pour Italian Spring Accelerometer est un accéléromètre 3-axes qui a pour but de mesurer les forces appliquées sur la sonde par le rayonnement solaire dans le visible et par le rayonnement infrarouge émis par Mercure. Combiné aux différents appareils de détermination de l’orientation du MPO, cet accéléromètre joue un rôle très important dans le bon fonctionnement de l’instrument MORE. ISA a une résolution de 10nm/s², pèse 5,8kg et consomme entre 7,4 et 12,1W d’électricité. Il a été fourni par l’Institut d’astrophysique et de planétologie spatiale de Rome (IAPS).

Instrument ISA. Crédit : ESA

-MORE: Mercury Orbiter Radio-science Experiment est une expérience de radio-science emportée pour mesurer la gravité de Mercure et en déduire la taille et l’état physique du noyau de la planète. Grâce à ces informations, les scientifiques du monde entier pourront bénéficier d’un modèle de Mercure très fidèle et ainsi procéder à des études sur la théorie de la gravité avec une précision encore jamais vue. MORE permettra aussi de mesurer la précision du système de détermination de la position du MPO. En effet MORE va utiliser les données d’autres instruments comme ISA, BELA et SIMBIO-SYS afin de connaître avec la plus grande certitude et la plus fine résolution sa position et son orientation. Afin de réaliser tous ces objectifs, MORE va capter le signal émis depuis la Terre grâce à une antenne en bande Ka. En mesurant le temps qu’a mis le signal pour arriver, il est possible de calculer la distance séparant la sonde du segment sol sur Terre avec une précision de 15cm et une vitesse relative avec une résolution de 1,5µm/s pour un temps d’intégration de 1000s. Cet instrument a été développé par l’Université de Rome « La Sapienza ».

-MERTIS : Le spectromètre imageur infrarouge MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) va fournir des données sur la composition géologique de la surface de Mercure. Pour ce faire, il utilise un spectromètre et un radiomètre. Le premier va permettre d’obtenir les différentes longueurs d’onde émises par le rayonnement thermique de la planète sur une plage de longueur d’onde de 7 à 14µm. Le radiomètre va, quant à lui, fournir des mesures sur l’intensité du flux de rayonnement électromagnétique, soit la puissance de rayonnement reçu par un angle solide. Ce second instrument peut mesurer les longueurs d’onde sur une plage de 7 à 40µm. Les deux capteurs formant MERTIS ont chacun une résolution spectrale de 9nm et un champ de vision de 4°. Ils se basent sur la technologie des micro-bolomètres afin de faire leurs mesures : la lumière incidente vient chauffer une plaque métallique qui est relié à un puits thermique pour la refroidir et en mesurant la modification de température de la plaque, on peut calculer la puissance du rayon incident et ensuite remonter jusqu’à sa longueur d’onde. MERTIS établira une carte minéralogique de 5 à 10% de la surface mercurienne avec une précision spatiale de 500m. Il pèse 3,3kg, consomme 8 à 13W et a été fourni par l’Université de Münster et la DLR. MERTIS est situé sur l’orbiteur MPO.

Instrument MERTIS. Crédit : ESA

-SERENA : SERENA, pour Search for Exospheric Refilling and Emitted Natural Abundances, est un instrument composé de quatre détecteurs de particules neutres et ionisées. Les données recueillies permettront d’en apprendre plus sur les interactions magnétosphère/exosphère/surface et vent solaire/espace interplanétaire. Le premier des quatre détecteurs est ELENA (Emitted Low-Energy Neutral Atoms) qui va mesurer la présence de particules neutres. Il a un champ de vision de 4,5° par 76°, une résolution angulaire de 4,5° par 4,5° et peut détecter des particules ayant une énergie de 20 à 5000eV. Le deuxième détecteur est STROFIO (Start from a Rotating Field mass spectrometer). C’est un spectromètre de masse qui va déterminer la composition des gaz présents dans l’exosphère de Mercure. Il analyse les particules neutres ayant une énergie inférieure à 1eV et il a un champ de vision de 20° dans le sens de déplacement de l’orbiteur. Le détecteur suivant est MIPA (Miniature Ion Precipitation Analyser) qui va étudier les ions dont l’énergie est comprise entre 15 et 15 000eV et qui sont précipités vers la surface de la planète. Enfin, le dernier détecteur de SERENA est PICAM (Planetary Ion Camera). Il s’agit d’un autre spectromètre de masse qui va analyser les ions d’une énergie de 1 à 3000eV qui sont projetés de la surface mercurienne jusqu’à son exosphère. SERENA a été développé l’IAPS de Rome et est placé sur le MPO.

Instrument SERENA avec STROFIO en haut à gauche, MIPA en haut à droite, ELENA en bas à gauche et PICAM en bas à droite. Crédit : ESA

-SIMBIO-SYS: Le spectromètre imageur SIMBIO-SYS (Spectrometer and Imagers for MPO BepiColombo Integrated Observatory System) fournit des données sur l’activité géologique, le volcanisme, la tectonique et l’âge de la surface de Mercure. L’instrument développé par l’Observatoire astronomique de Padoue en Italie est en fait composé de trois imageurs : STC, HRIC et VIHI. STC (Stereo Channel) est une caméra disposant de deux capteurs afin de fournir des images 3D de la surface. Sa résolution spatiale est de 50m par pixel et son champ de vue est de 4°. Les images sont prises dans quatre bandes de longueurs d’onde pour avoir une image panchromatique : 550, (650), 700 et 880nm. STC permettra de dresser la topographie de la surface mercurienne. HRIC (High spatial Resolution Imaging Channel) est une caméra à haute résolution spatiale afin d’obtenir des images très précises de cibles présélectionnées. Son champ de vision est de seulement 1,47° mais sa résolution spatiale atteinte 5m par pixel. Ses images sont prises dans les mêmes bandes de longueur d’onde que STC et il a été annoncé qu’à l’issue de la mission BepiColombo, plus de 10% de la surface de Mercure aura été imagée par HRIC. Le dernier imageur de SIMBIO-SYS est le spectromètre VIHI (Visible Infrared Hyperspectral Imaging Channel). Celui-ci travaille dans le spectre visible et le proche infrarouge (longueurs d’onde de 400 à 2000nm) et a une résolution spatiale de 100m tandis que sa résolution spectrale est de 6,25nm. VIHI fournira ainsi une carte minéralogique de Mercure avec une résolution minimale de 400m. Les trois instruments de SIMBIO-SYS sont placés à bord du MPO.

Instrument SIMBIO-SYS. Crédit : ESA

-PHEBUS : PHEBUS (Probing of Hermean Exosphere By Ultraviolet Spectroscopy) est un spectroscope ultraviolet qui va étudier le rayonnement émis par l’exosphère en observant directement au-dessus de l’horizon de Mercure. Ce spectroscope contient une partie optique composée de deux ensembles de réseau de diffraction et de deux capteurs pour couvrir une grande plage de la lumière ultraviolette. Le rayonnement incident à observer est réfléchi sur un déflecteur qui peut pivoter à 360° afin de modifier le pointage de l’instrument et donc de changer le lieu et l’altitude d’observation. Le premier spectroscope permet d’observer des longueurs d’onde sur une plage de 55 à 155nm et le second sur une plage de 145 à 315nm ainsi que les longueurs d’onde 404 et 422nm. Leur résolution spectrale est de 1nm et les mesures fournies permettront de mieux comprendre les interactions entre la surface, l’exosphère et la magnétosphère. Cet instrument situé à bord du MPO a été fourni par le Laboratoire atmosphères, milieux, observations spatiales (LATMOS) français et l’Institut de recherche spatiale de l’Académie des Sciences de Russie (IKI RAN).

Instrument PHEBUS. Crédit : ESA

-MIXS: Le spectromètre ultraviolet MIXS (Mercuring Imaging X-ray Spectrometer) va exploiter le phénomène de fluorescence des rayons X pour déterminer la composition chimique de la surface de Mercure. Ce phénomène peut s’expliquer de la manière suivante : Lorsque des rayons X du rayonnement solaire atteignent la surface de la planète, certains électrons des couches électroniques K et L vont s’exciter. En se désexcitant, ils vont émettre un photon ultraviolet caractéristique de l’élément chimique hôte de l’électron. Ainsi MIXS, avec ses deux capteurs MIXS-T, haute résolution mais champ de vision réduit à 1°, et MIXS-C, champ de vision de 10° mais résolution plus faible, va capter les photons émis par fluorescence sur une plage énergétique de 0,5 à 7,5keV soit des longueurs d’onde de 248nm à 16,5nm. Grâce à ces données, MIXS pourra ensuite déterminer l’abondance de différents atomes légers dans les roches comme le magnésium, l’aluminium, le fer, le titane et le silicium. La précision de cet appareil est de 5 à 50% suivant l’abondance des éléments. Cet instrument est fourni par l’Université de Leicester au Royaume-Uni et est placé sur le MPO.

Instrument MIXS. Crédit : ESA

-SIXS : SIXS (Solar Intensity X-ray and particles Spectrometer) est un instrument constitué de deux capteurs qui vont mesurer in situ le spectre du rayonnement X sur une plage énergétique comprise entre 1 et 20keV mais aussi les protons sur une plage de 0,33 à 30MeV et les électrons compris entre 50 et 3000keV. Cet instrument peut mesurer jusqu’à 20 000 particules et photons par seconde grâce à son large champ de vision de 180°. L’objectif de SIXS est de mesurer le flux du rayonnement issu du Soleil mais aussi celui réfléchi par Mercure. SIXS a été développé par l’Université de Helsinki en Finlande. Cet instrument permettra également de calibrer MIXS et les noms MIXS et SIXS ne sont pas que des acronymes mais signifient également « pourquoi ? » et « voilà pourquoi ! » en finnois.

Instrument SIXS. Crédit : ESA

-MGNS : Le spectromètre à neutrons et à rayons gamma MGNS (Mercury Gamma-ray and Neutron Spectrometer) doit permettre, dans un premier temps, de préciser et vérifier la composition chimique de toute la surface de Mercure avec une précision de 0 à 30% et une résolution spatiale de 400km. Un second objectif de MGNS est de fournir la distribution des éléments volatils qui se seraient déposés dans les cratères des pôles, toujours à l’ombre. Ainsi, le spectromètre fournira une carte de la densité spatiale de ces dépôts avec une précision de 0,1g/cm² et une résolution spatiale de 400km. Il confirmera ou infirmera également la présence de glace d’eau aux pôles. Afin de réaliser ces mesures, MGNS se base sur l’interaction entre les atomes des couches superficielles du sol (jusqu’à 2m de profondeur) avec les neutrons des rayons cosmiques. Excités, les atomes vont ensuite émettre des rayons gamma caractéristiques de l’atome en question. De plus, MGNS pourra détecter des traces de potassium, de thorium et d’uranium qui produisent des rayons gamma naturellement. Cet instrument est composé de cinq détecteurs : MGRS (Mercury Gamma-Ray Spectrometer) un spectromètre à rayons gamma qui utilise un scintillateur au bromure de lanthane (LaBr3) pour produire de la lumière plus facilement exploitable à partir des rayons gamma ionisants, et MNS (Mercury Neutron Spectrometer) constitué de quatre détecteurs de neutrons utilisant des compteurs proportionnels à gaz à l’Helium-3 et qui peuvent mesurer très précisément une faible quantité de rayonnement ionisant en mesurant un courant électrique généré par ce rayonnement dans une chambre remplie d’Helium-3 grâce à l’ionisation de cet élément chimique. Cet instrument a été fourni par l’IKI RAN de Moscou et placé à bord du MPO. Il pèse 5,5kg et consomme 6,5W d’électricité.

Instrument MGNS. Crédit : ESA

-MMO-MGF: Cet instrument MMO-MGF (MMO Magnetometer Fluxgate) comprend deux magnétomètres triaxiaux : MGF-O (outboard) situé au bout d’un mât de 4,4m nommé MAST-MGF et MGF-I (inboard) situé à 1,6m du bout de ce même mat. Ainsi, comme pour MPO-MAG, les deux magnétomètres permettront d’isoler le bruit parasite des systèmes de la sonde. Ces deux magnétomètres pourront mesurer un flux magnétique sur une plage dynamique de ± 2000nT avec une résolution de 3,8pT et une fréquence d’échantillonnage de 128Hz. Cet instrument complète le magnétomètre emporté à bord du MPO : MPO-MAG. MMO-MGF a été fourni par l’Institut de recherche spatiale de Graz en Autriche.

Instrument MGF-O de l’expérience MMO-MGF. Crédit : ESA

-MPPE : MPPE (Mercury Plasma and Particle Experiment) est un détecteur de plasma, de particules à haute énergie et d’atomes énergétiques neutres. Il permettra d’étudier les interactions entre le vent solaire et la magnétosphère de Mercure. Pour ce faire, MPPE est composé de sept détecteurs : Les MEA 1 et 2 (Mercury Electron Analyzers) montés à 90° l’un de l’autre et qui étudient les électrons tout comme HEP-electron (High Energy Particle instrument for electron). Les détecteurs MIA (Mercury Ion Analyzer), MSA (Mercury mass Spectrum Analyzer) et HEP-ion (High Energy Particle instrument for ion) sont chargés d’étudier les ions. Enfin le capteur ENA (Energetic Neutrals Analyzer) détecte et mesure les particules énergétiques neutres produites lors de la fusion entre des ions et des électrons. L’instrument MPPE a été fourni par l’ISAS situé à Kanagawa au Japon et est maintenant à bord du MMO.

Plage de mesure de MPPE et comparaison avec les instruments des sondes Mariner 10 et MESSENGER. Crédit : ESA

-MDM : Le MDM (Mercury Dust Monitor) est un détecteur de poussières qui va quantifier et étudier ces dernières pour obtenir des informations sur les caractéristiques de celles-ci au niveau de l’orbite de Mercure. Grâce à quatre détecteurs, MDM va mesurer l’énergie d’impact, une direction approximative et la densité de présence de ces poussières dans l’espace interplanétaire. Chacun de ces détecteurs est un capteur piézoélectrique en céramique PZT (Titano-Zirconate de Plomb) de 40mm par 40mm. Lorsque qu’une certaine pression est appliquée sur ces capteurs (ici, lorsqu’une poussière les percute) la céramique produit une légère tension entre ces deux faces, qui dépend de la pression appliquée. La sensibilité de ces capteurs est de 1pg.km/s (cela signifie que pour être détectée, la poussière doit avoir une quantité de mouvement p=mv supérieure à 1pg.km/s). MDM peut quasiment étudier un hémisphère entier et il est estimé que 100 à 200 impacts par an (terrestre) seront enregistrés. Cet instrument placé sur le MMO a été fourni par l’Université de technologie de Chiba au Japo. Au total, cet instrument pèse 601g et consomme 3W maximum.

Agencement des plaques piézoélectriques du MDM. Crédit : ESA

-MSASI : MSASI (Mercury Sodium Atmospheric Spectral Imager) est un spectromètre qui doit mesurer très spécifiquement la raie D2 du spectre d’émission du sodium (589nm ± 0,028) à la surface de Mercure. En effet cette raie présente une distribution anormale et encore inexpliquée. Afin de réaliser ses mesures, MSASI dispose d’un interféromètre de type Fabry-Perot fourni par l’université de Tokyo au Japon et d’un miroir rotatif pour couvrir toute la surface de la planète. Cet appareil a une résolution spectrale de 0,009nm et une résolution spatiale de 3 à 30km. Il pèse 3,48kg et consomme 15,2W d’électricité.

Types de mesures qu’effectuera MSASI. Crédit : ESA

-PWI : L’instrument PWI (Plasma Wave Invesitgation) est constitué de deux types de détecteurs de champ électrique (MEFISTO et WPT) et de deux détecteurs de champ magnétique (LF-SC et DB-SC) qui vont mesurer la forme des ondes et la fréquence du champ électrique jusqu’à 10MHz et du champ magnétique de 0,1Hz à 640kHz. Les appareils MEFISTO (Mercury Electric Field In Situ Tool) et WPT (Wire Probe antenna) sont deux antennes de 32m déployées de part et d’autre de l’orbiteur MMO (16m d’un côté et 16m de l’autre) et à un angle de 90° l’une de l’autre. Les capteurs LF-SC (Low-Frequency Search Coils) et DB-SC (Dual-Band Search Coils) sont placés au bout du mât de 4,4m, MAST-SC, placé à l’opposé du MAST-MGF où se trouve les magnétomètres MMO-MGF. Cet instrument a été développé et fourni par l’Université de Tōhoku au Japon.

Caractéristiques techniques de BepiColombo

BepiColombo est composé de quatre parties bien distinctes : deux sondes, un étage de transfert et une jupe protectrice.

MPO

La première des sondes et la plus grosse et chargée est le MPO pour Mercury Planetary Orbiter. Cette sonde a été développée par l’ESA et sera placée sur une orbite polaire elliptique autour de Mercure. Son apoapside sera à 1500km et son périapside à 480km ce qui lui permet d’effectuer une révolution en 2 heures et 21 minutes. La masse de cet orbiteur est de 1230kg dont 669kg d’ergols liquides et 85kg de charge utile. Cette charge utile est représentée par les onze expériences portées par le MPO : BELA, MPO-MAG, ISA, MORE, MERTIS, SERENA, SIMBIO-SYS, PHEBUS, MIXS, SIXS et MGNS. Tous ces instruments produiront un volume de données de 1550 gigabits par an. La sonde mesure 2,4m de large, 2,2m de profondeur et 1,7m de hauteur. Il possède un panneau solaire de 7,5m de long composé de trois panneaux. Celui-ci a une surface totale de 8m² et produit une puissance moyenne de 1800W. Afin de limiter la température de ce panneau à 215°C, il a été recouvert de réflecteurs solaires optiques mais également orienté d’une manière à ne jamais être face aux rayons solaires.

Répartition des instruments scientifiques à bord du MPO. Crédit : ESA

Le MPO possède un système de contrôle d’attitude formé par quatre roues de réaction et deux ensembles redondants de quatre moteurs-fusées d’une poussée de 10N. Afin de déterminer l’orientation de l’orbiteur, ce dernier est équipé de trois viseurs d’étoiles, de deux senseurs solaires (similaire aux viseurs à étoile mais qui utilisent le soleil pour se repérer) et deux centrales à inertie équipées chacune de quatre accéléromètres et quatre gyroscopes. Les corrections de trajectoire sont réalisés par deux ensembles redondants de quatre moteurs-fusées d’une poussée unitaire de 22N. Tous les propulseurs du MPO utilisent un mélange d’hydrazine et MON-3 (mélange de 97% de peroxyde d’azote et de 3% de monoxyde d’azote).

Photo de certains des moteurs de contrôle d’attitude du MPO. Crédit : ESA

La télécommunication avec le MPO est assurée par une antenne grand gain orientable en bande X et Ka de 1m de diamètre. Cette antenne est déployée peu de temps après le décollage afin d’assurer une communication la plus puissante possible. L’orbiteur possède cependant également une antenne moyen gain orientable et deux antennes faible gain fixes.

Antenne haut gain du MPO déployée peut après le lancement. Crédit : ESA

La sonde MPO sera soumise à un régime thermique particulièrement intense. En effet, à 0,3UA du Soleil, le rayonnement échauffe les surfaces de l’orbiteur à plus de 400°C à cause d’un flux thermique 10 fois plus important qu’en orbite terrestre. A cela, vient s’ajouter le rayonnement infrarouge de Mercure, 20 fois plus important que ce peut ressentir un satellite en orbite basse terrestre. Pour faire face à ce problème le corps du MPO est recouvert de trois couches d’isolant thermique. La couche extérieure, fabriquée par Airbus, est une superposition de près 50 fines feuilles de céramique et d’aluminium ce qui rend le matériau résistant sans dégradation à des températures jusqu’à 450°C. La couche intermédiaire est moins résistante avec une tenue jusqu’à 250°C. Enfin, la couche interne est une couche de protection thermique standard. Les trois couches de protection sont espacées de 2cm chacune afin d’amortir le choc d’éventuelles micrométéorites.

Coutures finales de l’isolation thermique multi-couches du MPO. Crédit : ESA

Cependant afin de dissiper les 300W de chaleur entrante et les 1200W générés par l’électronique, une face du MPO a été transformée en radiateur. Un réseau de 97 tubes sert de transport à la chaleur pour ensuite être évacuée par le radiateur fabriqué en titane recouvert d’argent. Cette face ne voit jamais le Soleil mais peut être attaqué par le rayonnement infrarouge de Mercure. Les lamelles sont donc disposées d’une telle sorte que le rayonnement émis par la planète soit réfléchi afin de ne pas chauffer la sonde.

Photo du radiateur thermique du MPO. Crédit : ESA

MMO

Le petit orbiteur MMO (Mercury Magnetospheric Orbiter), renommé Mio ce qui signifie « voie d’eau navigable » en japonais et représente ici le chemin parcouru par le projet, a été développé par la JAXA, l’agence spatiale japonaise, afin d’étudier la magnétosphère mercurienne. Pour ce faire, le MMO dispose de cinq instruments scientifiques qui comptent pour 40kg de la masse de la sonde : MMO-MGF, MPPE, MDM, MSASI et PWI. Ils produiront un total de 100 gigabits de données par an. Cet orbiteur sera placé sur une orbite polaire très elliptique avec un apoapside à 11640km et un périapside à 590km. Ainsi le MMO réalisera une orbite en 9 heures et 17 minutes. Il a la forme d’un prisme octogonal de 0,9m de hauteur et 1,8m de diamètre. Il pèse au total 275kg et ne possède que de peu de gaz froid pour contrôler son attitude. Ainsi, il sera mis en rotation à 15 tours par minute suivant un axe parallèle à l’axe de rotation de Mercure. Ceci permet que les deux extrémités du prisme ne soient jamais exposées au Soleil.

Répartition des instruments scientifiques à bord du MMO. Crédit : ESA

Les données du MMO sont transmises par une antenne grand gain situé sur la face du dessus. Cette antenne parabolique de 80cm de diamètre transmet les données en bande X avec un débit de 16 kilobits par seconde, soit environ 350 mégabits par séance de 6h par jour. La sonde dispose d’une mémoire interne de 2Go (soit 16 gigabits) pour stocker les télémesures et les données scientifiques entre deux sessions radio. Le MMO possède également une plus petite antenne à moyen gain, fixe. La partie supérieure des parois de l’octogone formant la sonde est recouverte de panneaux solaires et de miroirs afin de limiter la chaleur comme pour le MPO. Ceux-ci produisent 350W de puissance électrique afin d’alimenter tous les systèmes internes dont les 53W des instruments scientifiques.

Intégration entre les orbiteurs MPO et MMO. Crédit : ESA

MOSIF

Pendant toute la durée du voyage jusqu’à Mercure, l’orbiteur MMO est protégé dans une jupe pare-soleil qui sert également d’interface entre la sonde japonaise et la sonde européenne : le MOSIF, Magnetospheric Orbiter Sunshield and Interface Structure. Cette jupe mesure 3m de diamètre et 1,8m de haut. Elle pèse 145kg dont 20kg pour le système d’éjection et de mise en rotation du MMO. Sa protection thermique est extrêmement similaire à celle du MPO.

Photo de la jupe de protection solaire MOSIF. Crédit : ESA

MTM

Afin de transporter les deux sondes vers Mercure, BepiColombo utilise un étage de transfert : le MTM pour Mercury Transfer Module. Ce dernier pèse 2645kg dont 587kg de xénon (environ 10% de la production mondiale annuelle) et 157kg d’ergols chimiques. Il mesure 3,7m de large, 3,5m de profondeur et 2,3m de haut ce qui en fait la pièce la plus volumineuse de la mission. En plus de son volume très important viennent s’ajouter deux énormes panneaux solaires de 14m de longueur chacun. Ils peuvent ainsi produire une puissance d’environ 13kW d’électricité. Toute cette puissance ne sert quasiment qu’à une chose : le propulsion électrique MEPS.

Photo d’un deux panneaux solaires du MTM déployé en orbite. Crédit : ESA

 

Le système MEPS (MTM Electric Propulsion System) est constitué de quatre moteurs ioniques à grille. La manière dont fonctionnent ces moteurs est assez simple : Du xénon est injecté dans la chambre du moteur où il est ionisé avant que les noyaux des atomes ne soient accélérés par de grand électroaimant. Ce système est extrêmement pratique de par son efficacité encore inégalée : L’impulsion spécifique (qui mesure l’efficacité d’un moteur) des moteurs du MEPS est comprise entre 3958 et 4285 secondes contre seulement 453 secondes pour le moteur cryotechnique RS-25, le moteur à ergols liquides le plus efficace actuellement. Cependant ces moteurs ne produisent une poussée unitaire que de 145mN (contre 2279kN pour le RS-25). En faisant varier la puissance électrique, on peut moduler la poussée : Ainsi une puissance de 2,5kW fournira 75mN de poussée et 4,6kW fourniront 145mN.

Grâce aux 587kg de xénon qu’emporte le MTM, ce dernier aura un delta-V de 5 400m/s. Chacun de ces quatre moteurs peut être orienté précisément afin d’orienter BepiColombo comme souhaité. Dans le mode d’utilisation normale du MTM, seuls deux des quatre moteurs ioniques ne sont utilisés en même temps. Pendant toute la mission, le MEPS doit fonctionner pendant 880 jours répartis sur plus de 25 phases propulsives dont la plus longue dure 167 jours. 30 jours avant chaque survol planétaire, le MEPS est désactivé afin de ne pas perturber l’assistance gravitationnelle. Les quatre moteurs de ce système sont fournis par QinetiQ, le constructeur anglais qui avait notamment déjà fourni ceux du satellite européen GOCE.

Un des panneaux solaires du MTM déployés au sol pour des tests. Remarquez que malgré un objectif fish-eye, il rentre difficilement dans l’image. Crédit : ESA

Les panneaux solaires du MTM peuvent être pointés directement vers le Soleil lorsque la distance les séparant est inférieure à 0,62UA. En deçà, l’énergie du rayonnement solaire devient trop importante et les panneaux solaires atteignent des températures les dégradant. Pour pallier à ce problème, ils sont inclinés progressivement afin de limiter la surface en contact direct avec le rayonnement. Cependant, pour conserver une puissance nécessaire au bon fonctionnement du MEPS, ces panneaux ont dû être agrandis, d’où leur surface de 45m².

Pour en apprendre plus sur la chronologie de la mission que ce soit sur son développement ou sur son déroulement, vous n’avez qu’à aller lire ce second article sur l’histoire passée et future de BepiColombo.

Si vous voulez voir plein de magnifiques images de la mission, que ce soit du décollage, de sa fabrication ou même plus tard, celles prises prise par les sondes, allez voir la galerie de l’ESA.

 Et comme toujours, si vous souhaitez réagir à cet article, il suffit de vous rendre au topic créé à cet effet !

 

BepiColombo, l’histoire d’une mission très ambitieuse

mercredi, octobre 24th, 2018

Mercure. La planète la plus proche du Soleil. Cette dernière nous est encore très mystérieuse. Seules deux sondes spatiales l’ont explorée : Mariner 10 qui l’a survolé trois fois en 1974-75 puis MESSENGER qui s’est mis en orbite polaire de 2011 à 2015. Ces deux missions étaient très innovantes et représentaient des pionnières de l’exploration spatiale. Malheureusement elles n’ont jamais permis d’étudier pleinement Mercure et ce pour plusieurs raisons. Pour Mariner 10 c’est la résonance spin-orbite 3:2 qui posa problème. Cette résonance signifie que la planète réalise trois rotations sur elle-même quand elle fait deux révolutions autour du Soleil. De par cette résonance, Mariner 10 n’a pu voir éclairées que les mêmes zones de Mercure et n’a donc pas pu cartographier l’entièreté de la planète. Pour MESSENGER ce problème était inexistant puisque la sonde s’était placée en orbite polaire de Mercure et non pas sur une orbite héliocentrique. Cependant, pour éviter de surchauffer, il avait été décidé que la sonde soit sur une orbite très elliptique. Ainsi la chaleur réfléchie et émise par la surface de la planète n’attaquait pas la sonde lorsque cette dernière se trouvait à son apoapside. Cependant, cet apoapside se trouvait plutôt vers le pôle Sud de Mercure, ce qui empêcha MESSENGER de cartographier cette partie de la planète correctement.

Schéma de la première sonde à survoler Mercure : Mariner 10. Crédit : NASA

BepiColombo a été lancée le 20 octobre à 3h45 CEST afin d’aller explorer cette planète encore trop méconnue. Et pour ce faire, la mission n’emporte pas une mais bien deux sondes et pas moins de seize instruments scientifiques pour étudier entièrement Mercure : de l’origine de la planète à l’étude de sa fine atmosphère en passant par des mesures de son champ magnétique et même une étude poussée de l’orbite de la planète permettant d’encore tester la théorie de la Relativité Générale d’Einstein. Cette mission conjointe entre l’ESA, l’agence spatiale européenne, et la JAXA, l’agence d’exploration aérospatiale japonaise, devrait durer au minimum huit ans et pourrait être allonger d’un an. Cependant, sur toute cette durée, il ne faut pas oublier de compter sept ans de voyages pour rejoindre Mercure avec pas moins de neuf assistances gravitationnelles de la Terre, de Venus et de la planète principale en elle-même, Mercure.

L’histoire du projet

Dès le milieu des années 1980, l’ESA envisage d’envoyer une sonde à destination de Mercure pour l’étudier. Dans cette même décennie, la mission Mercury Express (en référence à Vénus Express et Mars Express, deux autres missions d’exploration de l’ESA), plus connue sous le nom de LUGH, Low-cost Unified Geophysics at Hermes (Hermes étant le nom du dieu grec qui est devenu Mercure chez les romains et qui a donc donné son nom à la planète en question), est imaginée. Celle-ci prévoyait le lancement d’un vaisseau-mère qui se chargerait d’emporter deux mini-sondes jusqu’à Mercure. LUGH ne sera cependant pas retenu car ses objectifs se superposent à ceux de MESSENGER, la sonde américaine développée en même temps dans le cadre du programme Discovery.

Vue d’artiste de la sonde américaine MESSENGER en orbite de Mercure. Crédit : NASA

Quelques années plus tard, en 1996, le comité scientifique de l’ESA annonce les prochaines missions lourdes qu’il a choisi pour son programme Horizon 2000+. Celles-ci sont LISA, mesures des ondes gravitationnelles grâce à deux satellites, Gaia, un observatoire spatial qui fournit des données très importantes sur l’ensemble du ciel, et enfin une mission d’exploration de Mercure. L’année qui suit, une étude détaillée de cette dernière mission est réalisée et on en conclut qu’il faudra deux véhicules distincts : un orbiteur stabilisé sur trois axes pour étudier la surface et un orbiteur spinné (en rotation sur lui-même) pour mesurer les champs magnétique et électrique. Ces deux véhicules devront également avoir recours à la propulsion électrique afin d’atteindre la planète. Cette mission européenne doit permettre d’effectuer des études beaucoup plus approfondies que la sonde américaine MESSENGER mais aussi de compléter la cartographie et les relevés topographiques qui doivent être réalisés par cette dernière. En septembre 1999, il est décidé de baptiser cette mission BepiColombo, en l’honneur du scientifique italien Guiseppe « Bepi » Colombo qui a permis aux ingénieurs de la NASA, grâce à ses calculs, de réaliser plusieurs survols de Mercure avec Mariner 10.

Photo de Guiseppe Colombo, le scientifique qui a donné son nom à la mission BepiColombo. Crédit : ESA

Pendant cette même période, de l’autre côté de la Terre, l’Institut des sciences spatiales et astronautiques japonais, l’ISAS qui a plus tard donné la JAXA avec deux autres organismes, étudie également la possibilité d’envoyer une sonde à destination de Mercure. Celle-ci doit être lancée par une fusée nipponne H-IIA en 2005 pour arriver sur son lieu d’étude en 2008 où elle serait mise sur orbite polaire elliptique. Le but de cette sonde est d’étudier les champs magnétique et électrique ainsi que les particules du vent solaire. Au tout début du XXIème siècle, les projets européens et japonais fusionnent et il est décidé que l’ISAS développera l’orbiteur spinné de BepiColombo : La mission n’est plus simplement internationale, elle devient intercontinentale !

L’orbiteur japonais MMO en cours de fabrication au Japon. Crédit : JAXA

Dans les plans initiaux de BepiColombo, un atterrisseur était présent. Celui-ci, nommé Mercury Surface Element, MSE, devait se poser au niveau des régions polaires, non loin du terminateur (séparation entre la nuit et le jour sur un corps céleste) afin de limiter les contraintes thermiques. Il devait peser 44kg pour un diamètre de 90cm et une masse d’instruments scientifiques de 7kg dont des caméras de descente et de surface, un spectromètre à rayons X, un magnétomètre, un sismomètre et plusieurs autres instruments destinés à des mesures sur les propriétés thermiques et mécaniques du sol. Certains de ces derniers nécessitent un dispositif d’ancrage au sol mais aussi un moyen de les placer à plusieurs mètres du MSE pour ne pas parasiter les données, par exemple dans le cas du magnétomètre à cause des systèmes électriques du robot. A cause de l’atmosphère de la planète beaucoup trop ténue, l’atterrisseur doit recourir à des rétrofusées ce qui impacte de manière importante la masse d’ergols à emporter. Ces moteurs doivent amener le MSE à une vitesse nulle à 120m d’altitude avant de déployer une série de coussins gonflables qui doivent le protéger au moment de l’impact à une vitesse maximale de 30m/s. Cette technique sera utilisée quelques années plus tard par la NASA pour faire atterrir son rover Opportunity à la surface de Mars. L’atterrisseur MSE doit posséder une batterie de 1,7kWh afin de l’alimenter en électricité pendant sa mission de sept jours. Au final, la complexité d’un tel atterrisseur, les contraintes thermiques à la surface, les limites de masse de BepiColombo et les limites budgétaires de l’ESA à la suite des restrictions en 2003 contraignent à l’abandon du MSE.

Modèle 3D du projet d’atterrisseur MSE, plus tard abandonné. Crédit : ESA

Vient ensuite le temps de choisir le lanceur pour cette mission. Deux scénarios sont envisagés : Un premier qui vise à envoyer les deux sondes indépendamment grâce à deux lanceurs Soyuz qui décolleraient depuis Baïkonour, et un second, plus simple techniquement mais plus coûteux, dans lequel les deux sondes sont envoyées ensemble à bord d’une Ariane 5 tirée depuis Kourou. Avec le développement d’une nouvelle version de l’étage supérieur Fregat du lanceur Soyuz ainsi que la construction d’un pas de tir pour ce dernier en Guyane, ce qui augmentera ses performances grâce à l’effet de fronde, il est décidé de lancer les deux sondes à bord d’un Soyuz qui décollera depuis Kourou en 2013 afin d’arriver en orbite de Mercure en 2019. Initialement, BepiColombo est conçue pour tenir dans la coiffe du lanceur russe mais aussi pour ne pas dépasser 80% de la masse de charge utile maximale que peut mettre sur orbite ce dernier. Cependant, au fur et à mesure de l’avancée du projet, cette masse augmente dangereusement et le projet frôle l’annulation en 2008. Au final, il est décidé de tirer BepiColombo à bord d’une Ariane 5, ce qui augmente le coût du projet de 120 millions d’euros mais qui permet une charge utile bien plus lourde. En décembre 2009, le Comité du programme scientifique de l’ESA approuve la reconfiguration et un contrat avec Arianespace est signé en septembre 2011.

Photo du pas de tir de Soyuz à Kourou. Crédit : ESA

En 2007, l’ESA choisit Astrium Allemagne (devenu depuis Airbus Defence and Space) ainsi que Thales Alenia Space Italie pour le développement de la sonde européenne MPO (Mercury Planetary Orbiter) et de l’étage de transfert MTM (Mercury Transfer Module). Des études poussées montrent que les panneaux solaires ne pourront pas faire face à l’afflux thermique qu’ils vont subir : il faut fortement accroître leur surface ce qui fait monter la masse de la sonde à 4t et qui conforte le changement de lanceur pour passer de Soyuz à Ariane 5. Malgré un coût qui atteint 970 millions d’euros, l’ESA décide de continuer le projet. Plusieurs retards à la suite de problèmes principalement lors du développement du système complexe de propulsion solaire-électrique repoussent le lancement de la mission de 2014 à octobre 2018.

L’orbiteur MPO et l’étage de transfert MTM pendant un test dans le simulateur spatial. Crédit : ESA

En août 2011, Thales Alenia Space fournit à l’ESTEC, le Centre européen de technologie spatiale, un modèle thermique du MPO. Dès septembre de la même année des tests sur ce modèle débutent dans le LSS (Large Space Simulator, une grande chambre à vide permettant de recréer les conditions de l’espace) afin de vérifier la résistance de l’engin à des erreurs d’orientation dans des régions proches du Soleil. En décembre 2011 c’est au tour du Japon de livrer un modèle thermique de l’orbiteur spinné MMO (Mercury Magnetospheric Orbiter) à l’ESTEC qui subira les mêmes tests. Six mois plus tard, on commence les mesures de répartition des masses de la sonde entièrement assemblée. L’usine de Turin de Thales Alenia Space achève l’assemblage du modèle de BepiColombo qui servira aux qualifications finales et au vol en juillet 2014. Les modules sont ensuite livrés à l’ESTEC durant l’été 2015 pour y réaliser les tests finaux et s’assurer que ceux-ci n’auront pas de problèmes une fois dans l’espace. Et heureusement que ces tests ont été faits ! En effet, un problème majeur a été détecté dans un boîtier de régulation électrique du MTM. Cette défaillance a causé un des reports de lancement et a poussé les sondes à n’arriver vers Mercure qu’en décembre 2025. Pendant l’été 2017, les tous derniers tests sont réalisés à l’ESTEC en configuration de vol pour le trajet jusqu’à Mercure mais aussi après séparation des différents modules. Les quatre pièces formant BepiColombo ont ensuite été livrées à Kourou pour y être assemblées et intégrées à leur lanceur Ariane 5. Au final, le coût total du projet pour l’ESA et la JAXA s’élève à 1,65 milliards d’euros. Si vous pensez que ces dépenses sont bien trop grandes et inutiles, dites-vous que ce projet aurait pu être financé instantanément si chaque personne résidant en Union Européenne et au Japon donnait 2,60€. En comparaison, la France dépense l’équivalent de 861€ par habitant pour la défense chaque année.

Modèle de BepiColombo utilisé pour les tests thermiques. Celui-ci est aujourd’hui exposé au Science Museum de Londres. Crédits : @therogue_astro avec son accord

Déroulement de la mission

La mission BepiColombo est une des plus ambitieuses de l’histoire : près de sept ans de voyages et pas moins de neuf assistances gravitationnelles pour atteindre la planète aux conditions orbitales les plus rudes, Mercure. Ainsi, le 20 octobre 2018, à 3h45 CEST, une Ariane 5 décolle depuis le Centre Spatiale Guyanais à Kourou. Cette Ariane 5, c’est celle qui emporte BepiColombo dans sa coiffe. Deux minutes plus tard, les deux gigantesques étages d’accélération à poudre (EAP) sont vides et sont donc largués. A T+3 minutes du lancement, c’est au tour de la coiffe de devenir inutile et d’être larguée : pour la première fois, BepiColombo est en contact direct avec le vide de l’espace. Six minutes après cet évènement, l’étage principal cryogénique (EPC), vide, est séparé et c’est l’étage secondaire cryogénique (ESC-A) qui prend le relai sur la propulsion. A T+27 minutes, BepiColombo a atteint la trajectoire visée : Il est sur une trajectoire hyperbolique pour quitter la Terre avec 3km/s de supplément par rapport à la vitesse de libération de cette dernière. Moins d’un quart d’heure plus tard, l’antenne de l’ESA à New Norcia en Australie reçoit le signal de BepiColombo : Le lancement s’est déroulé parfaitement !

Décollage de BepiColombo. Crédit : ESA

74 minutes après le lancement, les deux gigantesques panneaux solaires du module de transfert (MTM) ainsi que le panneau de l’orbiteur européen (MPO) sont déployés. Une photo prise par une caméra positionnée sur le MTM et reçue 12h après le décollage viendra confirmer ce déploiement. Deux autres caméras apportent, de la même manière, des preuves visuelles du bon déploiement de l’antenne haut-gain du MPO ainsi que de son mât à expériences. L’antenne s’est déployée 29h30 après le décollage tandis que le mât a attendu 18h pour s’ouvrir. Enfin, trois jours après le décollage, les sous-systèmes du vaisseau et les instruments reçoivent une dernière vérification avant de démarrer la longue phase de croisière. A partir de ce moment, BepiColombo a déjà dépassé l’orbite lunaire depuis plus d’un jour et approche de sortir de la sphère d’influence terrestre : Cette sphère représente le lieu où la gravité terrestre est majoritaire sur celle de tout autre corps.

Les trois photos qui ont permis de confirmer le bon déploiement des panneaux solaires du MTM et de l’antenne grand gain et du mât du MPO. Crédit : ESA

Deux mois plus tard, le système de propulsion MEPS sera allumé pour la première fois. Les moteurs ioniques, en fonctionnement, vont ioniser du xénon pendant un total de 880 jours tout au long de la mission, répartis en plus de 25 phases propulsives. Les assistances gravitationnelles commenceront avec la première le 13 avril 2020 : BepiColombo passera à environ 11 200km de la Terre. Quelques mois plus tard, le 16 octobre 2020, ce sera au tour de Vénus de recevoir une visite de la sonde à moins de 11 000km d’altitude. Le 11 août 2021, BepiColombo passera à nouveau proche de cette planète mais cette fois à une distance de seulement 1 000km. S’en suivront ensuite six assistances de Mercure afin de modifier suffisamment l’orbite de BepiColombo pour minimiser le coût en carburant de l’insertion en orbite. Ces survols auront lieu le 2 octobre 2021 à 200km, le 23 juin 2022 à 200km, le 20 juin 2023 à 200km, le 5 septembre 2024 à 200km, le 2 décembre 2024 à 40 000km et enfin le 9 janvier 2025 à 345km.

A partir de cette dernière date, BepiColombo sera sur une trajectoire quasiment identique à celle de Mercure. Il ne suffira plus que d’une petite impulsion des moteurs chimiques du MPO pour se placer en orbite polaire autour de la planète. Mais avant cette insertion, l’étage de transfert MTM sera largué car devenu inutile, début octobre 2025. Le 5 décembre de la même année, les moteurs à propulsion liquide de l’orbiteur européen MPO seront allumés afin de se placer sur une orbite haute très elliptique (674km par 178 000km). Cette insertion sera réalisée à l’aide d’une méthode connue sous le nom anglais de « weak stability boundary capture ». Cette méthode consiste à faire arriver son vaisseau en bordure de la sphère gravitationnelle (au niveau des points de Lagrange Mercure-Soleil L1 ou L2) pour se faire capturer en douceur par le corps, en l’occurrence Mercure.

Schéma simpliste du principe du « Weak Stability Boundary Capture ». Crédit : Aurélien Genin

Une fois cette première insertion orbitale réalisée, le MPO allumera à cinq reprises ses propulseurs afin de diminuer l’altitude de son apoapside pour atteindre une orbite polaire de 590km par 11 640km : l’orbite du MMO, la sonde japonaise. Cette dernière sera larguée peu de temps après mais cette séparation est soumise à certaines contraintes techniques : Coupure de signal en cas d’opposition Terre-Mercure, impossibilité de réaliser des manœuvres dans une zone de plus ou moins 60° du périhélie pour éviter les surchauffes non prévues et enfin des éclipses pouvant impacter l’alimentation énergétique du MMO. Une fois le MMO largué, la jupe de protection MOSIF sera séparée elle aussi, devenue inutile. L’orbiteur MPO réalisera enfin une série de dix propulsions afin de se placer sur son orbite finale : 480km par 1500km. Au total la phase d’insertion en orbite aura duré trois mois auquel il faut rajouter un mois de mise en service de la sonde européenne.

Récapitulatif des différentes séparations entre les morceaux de BepiColombo à l’arrivée de Mercure. Crédit : ESA

La phase d’exploration de Mercure commence donc vers le début 2026 et doit durer une année terrestre pendant laquelle Mercure aura effectué quatre révolutions autour du Soleil. Il est cependant prévu d’étendre cette phase d’une année supplémentaire si les équipements fonctionnent toujours. Au total, le voyage jusqu’à Mercure aura duré plus de sept ans pour une distance parcoure de neuf milliards de km et plus de 18 orbites solaires réalisées. BepiColombo atteindra une vitesse de pointe de 60km/s ce qui rendent ridicule les 7,7km/s de l’ISS en orbite terrestre. De par les 240 millions de km qui pourront séparer BepiColombo de la Terre, un signal pourrait mettre plus de 13min pour réaliser un simple voyage aller entre les antennes au sol et les antennes des sondes.

Pour en apprendre plus sur les aspects techniques de la mission ainsi que sur tous les instruments qu’elle emporte, vous n’avez qu’à aller lire ce second article qui entre bien plus dans les détails des vaisseaux.

Si vous voulez voir plein de magnifiques images de la mission, que ce soit du décollage, de sa fabrication ou même plus tard, celles prises prise par les sondes, allez voir la galerie de l’ESA.

 Et comme toujours, si vous souhaitez réagir à cet article, il suffit de vous rendre au topic créé à cet effet !

Un satellite argentin d’observation et des booms supersoniques en Californie

lundi, octobre 8th, 2018

S’il y a bien une chose à laquelle nous commençons à être habitués, ce sont les atterrissages spectaculaires de SpaceX. Ceux-ci ne se faisaient normalement que sur trois lieux distincts : au sol à Cape Canaveral, dans l’Atlantique sur la barge OCISLY ou dans le Pacifique sur la barge JRTI. Cependant avec son lancement du 8 octobre 2018, SpaceX a inauguré un nouveau lieu d’atterrissage : la LZ-4 à Vandenberg, sur la côte Ouest des Etats-Unis. Cette troisième zone d’atterrissage au sol permettra à la compagnie américaine de récupérer plus rapidement ses boosters après leur vol, et ce, même pour des lancements en orbite polaire ou héliosynchrone comme ce fut le cas pour SAOCOM 1A en ce jour.

La Falcon 9 Block 5 décolle depuis le pas de tir SLC-4E de Vandenberg. Crédit : SpaceX

 

SAOCOM 1A, un peu d’histoire

Acronyme de Satelite Argentino de Observación COn Microondas (Satellite argentin d’observation micro-ondes), SAOCOM regroupe deux satellites d’observation de la Terre. Ils ont été développés par l’agence spatiale argentine (CONAE) puis fabriqué par l’entreprise INVAP, entreprise argentine spécialisée dans les technologies de pointe (énergie nucléaire, aérospatial, radars, etc). Ce projet est né en 1998 afin d’apporter des informations sur les sols, les eaux et la végétation.

En juin 2002, une première révision conceptuelle prévisionnelle a été réalisée en présence de la CONAE, d’INVAP, de la NASA, de l’AEB (agence spatiale brésilienne) et du CNES. A ce moment, le lancement était prévu pour 2004, date qui a constamment été repoussée pour causes budgétaires mais aussi techniques de part la complexité du satellite. 6 ans après, en octobre 2008, une seconde révision conceptuelle a été réalisée et passée avec succès. Cette même année, la CONAE a reçu un financement de la Banque Interaméricaine de développement pour mener à bien son projet SAOCOM.

Plateforme de SAOCOM 1A en cours de préparation. Crédit : Casa Rosada (Argentina Presidency of the Nation), Creative Commons

Ce n’est que le 16 avril 2009 que l’agence spatiale argentine signe un contrat avec SpaceX pour mettre en orbite ses deux satellites SAOCOM 1A et 1B grâce à deux Falcon 9. En 2012, on assiste enfin aux premiers tests concrets avec notamment les essais des systèmes de régulation thermique. Ces derniers s’avèrent fonctionner comme attendu et d’autres tests sont réalisés en 2014 sur les couvertures thermiques.

En octobre 2017, la structure du satellite est enfin terminée et des premiers tests environnementaux commencent. Dès le mois de décembre de la même année, tous les éléments fonctionnels ont été intégrés au satellite et SAOCOM 1A était prêt pour son vol ! Une ultime révision a été réalisée du 7 au 11 mai 2018 afin de vérifier que tous les systèmes seront opérationnels une fois en orbite. Le 15 juillet, l’antenne radar qui servira au satellite à faire toutes ses mesures scientifiques une fois dans l’espace a été fermée pour la dernière fois avant son lancement, ce qui concluait enfin tous les tests.

Chargement de SAOCOM 1A dans son Antonov An-124. Crédit : Juan Kulichevskyv, Creative Commons

Le 30 juillet 2018, un avion-cargo Antonov An-124 a atterri en Argentine pour transporter SAOCOM 1A. Il redécolla le 1er août avant d’arriver à la base militaire de Vandenberg le lendemain. Une semaine après, le lancement a été annoncé et l’intégration du satellite dans la coiffe de la Falcon 9 pouvait commencer pour un lancement prévu en octobre.

SAOCOM 1A, quelques points techniques

SAOCOM 1A mesure 4,5m de haut pour un diamètre de 2,9m lorsque les panneaux solaires et l’antenne radar sont repliés. La plateforme du satellite (sa structure) est dérivée d’un autre satellite argentin : SAC-C, qui était resté en orbite de 2000 à 2013. SAOCOM 1A pèse environ 3000kg au décollage et a une durée de vie de 5 ans en orbite.

Modèle 3D du satellite SAOCOM 1A. Les trois panneaux en haut forment le panneau solaire et le grand panneau en bas est le radar RSO. Crédit : INVAP

Ce satellite est alimenté en électricité par un grand panneau solaire de 15m² qui est déplié en orbite. Ce panneau a été développé et fabriqué à la faculté d’ingénierie de l’université nationale de La Plata. D’un autre côté, tout le système de régulation thermique fut fourni par le centre spatial Teófilo Tabanera, un complexe de la CONAE. SAOCOM 1A utilise deux types de communication : les bandes S pour la télémétrie et les diverses commandes, et les bandes X pour transmettre les données acquises par le radar. Ce téléchargement se fait à environ 40Mo/s tandis que le satellite a une mémoire de 32Go.

SAOCOM 1A avec son radar RSO déployé. Crédit : Casa Rosada (Argentina Presidency of the Nation), Creative Commons

L’outil principal de SAOCOM 1A est un radar RSO (ou SAR en anglais) pour Radar à Synthèse d’Ouverture. Celui-ci a été développé par l’Institut Argentin de Radioastronomie. Il mesure 10m de long et 3,5m de large et il est composé de près de 140 petites antennes radar qui lui permettent de réaliser un modèle 3D relativement précis de notre planète. Pour ce faire, le radar va successivement « illuminer » la surface en microondes (bande L) puis capter leur écho pour pouvoir associer à chaque point dans son champ de vision une altitude. Étant donné que le satellite est en mouvement, un même point va être illuminé plusieurs fois ce qui permet d’accroître la précision des données mesurées puis calculées. Grâce à ce système et à des fonctions mathématiques très performantes (transformée de Fourier notamment), il est ensuite possible de recréer un modèle tridimensionnel des diverses parties de la surface ou même du globe entier. Un énorme avantage des radars est, notamment, que les ondes émises traversent sans trop de perturbations les nuages. Ainsi il est facilement possible de cartographier des zones géographiques même si le climat ne semble pas trop s’y prêter.

SAOCOM 1A, un projet lié à l’Italie

Depuis 1992, la CONAE et l’Agence spatiale italienne (ASI) ont collaboré sur les projets SAC-B et SAC-C, deux autres satellites argentins. Tandis que la CONAE travaillait sur ses deux SAOCOM 1, l’ASI commençait le développement de sa constellation Cosmo-SkyMed qui présente des caractéristiques très similaires aux deux satellites argentins. Les très bonnes relations entre les agences spatiales des deux pays ont mené à la création du projet SIASGE (Sistema Italo Argentino de Satélites para la Gestion de Emergencias ou Système italiano-argentin de satellites pour la gestion des urgences) en juillet 2005. Grâce à ce dernier, le partage des données obtenues par les satellites argentins et italiens est facilité et officialisé. Ce croisement d’informations permettra de fournir des alertes très précises sur les incendies, les inondations, les avalanches et autres catastrophes naturelles.

Vue d’artiste d’un satellite Cosmo Sky-Med en orbite terrestre et déployé. Crédit : E-Geos

Le SIASGE a une influence directe sur les orbites des satellites car les six satellites en question (2 SAOCOM 1 et 4 Cosmo-SkyMed) sont placés sur des orbites héliosynchrones d’une même altitude (620km) mais sur six plans différents afin de fournir une actualisation toutes les 12 heures d’un même point à la surface. Ainsi le suivi des catastrophes s’en trouve énormément facilité.

En mai 2016, la CONAE et l’ASI ont signé une lettre d’intention qui les encourage à lancer une seconde version de ce projet : SIASGE II. Le but est d’intensifier et de renforcer la coopération dans les domaines de la science, de la recherche et des techniques spatiales à des fins pacifiques et en particulier dans le domaine de la prévention et la gestion des situations d’urgence.

Premier RTLS sur la côte Ouest

SpaceX possède actuellement deux lieux de lancements : deux pas de tirs sur la côte Est des Etats-Unis (LC-39A et SLC 40) et un pas de tir sur la côte Ouest (SLC-4). Cependant il s’avère que la zone de tir SLC-4 est en fait composée de deux pas de tirs : SLC-4E et SLC-4W. SpaceX a donc décidé de conserver le SLC-4E comme lieu de tir pour ses Falcon 9 qui doivent mettre sur orbite polaire ou quasi-polaire des satellites, et de reconvertir le SLC-4W en zone d’atterrissage. En effet, si SpaceX possédait déjà deux « Landing Zones » à Cape Canaveral, sur la côte Est (les LZ-1 et LZ-2), l’entreprise n’en avait pas encore à Vandenberg, sur la côte Ouest, et était donc forcée de toujours faire réatterrir ses boosters sur la barge JRTI à plusieurs centaines de km dans le Pacifique. Cette option est pratique dans le sens où le booster n’a pas besoin de réaliser un long « boostback burn » pour retourner proche de son pas de tir, mais d’un autre côté, cette procédure ne permet pas un retour rapide du lanceur qui met typiquement plusieurs jours à rentrer au port.

La zone d’atterrissage LZ-1 à Cape Canaveral avec un Homme pour l’échelle. Crédit : SpaceX

C’est pourquoi SpaceX à donc décider de construire une troisième zone d’atterrissage à Vandenberg : la LZ-4. Celle-ci permettra aux boosters de réaliser la procédure connue sous le nom de RTLS pour Return To Launch Site. Cette dernière n’a cependant pas été inventée par SpaceX. Elle existait en fait déjà à l’époque des navettes spatiales et consistait en une urgence très critique. En effet, si un problème sur le lanceur était détecté peu après le décollage et que celui-ci était trop important (perte d’un moteur par exemple) pour continuer jusqu’à la mise en orbite puis revenir après une révolution (Abort To Orbit ou ATO), il était possible, une fois les boosters à ergols solides séparés, de faire un demi-tour toujours avec le réservoir externe et les moteurs RS-25 restants afin de consommer tous les carburants (du réservoir externe et de la navette) pour alléger l’orbiteur. Ce dernier va ensuite se séparer du réservoir et procéder à un atterrissage sur l’énorme piste au Kennedy Space Center. Ce type d’avortement de mission n’a jamais été réalisé et il était considéré comme extrêmement dangereux à la suite de plusieurs simulations d’entraînements pour les astronautes. Il est important de noter que même le RTLS n’aurait pas sauvé Challenger car le problème qui a mené à la perte de l’équipage et du véhicule est survenu avant la séparation des boosters.

La zone d’atterrissage LZ-4 à Vandenberg. Crédit : SpaceX

Pour ce qui est de SpaceX, le RTLS n’est pas une manœuvre d’urgence mais bien une manœuvre permettant au booster de la Falcon 9 de revenir plus vite au pas de tir et donc de pouvoir être repréparé plus rapidement pour un futur lancement. SAOCOM 1A représente une cible excellente pour tester cette LZ-4 car, avec sa masse de seulement 3000kg, il reste bien en dessous des limites de la Falcon 9 ce qui fait que les réservoirs du booster seront encore assez remplis au moment de la séparation des deux étages. Le booster utilisé lors de ce vol n’en est d’ailleurs pas à son premier décollage car il s’agit du B1048.2 qui avait mis sur orbite dix satellites Iridium NEXT lors du vol Iridium NEXT VII sous le nom B1048.1.

Le booster B1048.2 après son atterrissage qui a inauguré la LZ-4. Crédit : SpaceX

Un point essentiel à noter est qu’un atterrissage comme fait SpaceX implique un objet allant à une vitesse supersonique et cause donc des booms supersoniques qui sont au nombre de trois et qui sont provoqués par les moteurs puis les jambes et enfin les « grid fins » , comme le montre très bien cette vidéo lors du lancement de la Falcon Heavy à 6:47 (on en entend 10 car il y avait deux boosters et de l’écho à cause des bâtiments). A Cape Canaveral, ceux-ci ne posent pas trop de problèmes car la base, étant si grande, il n’y a pas d’habitations à plusieurs dizaines de km à la ronde. Cependant la base militaire de Vandenberg est bien plus petite et certaines personnes habitant proche de la base ont pu très bien entendre ces booms supersoniques !

Comme toujours, si vous souhaitez réagir sur cet article, il vous suffit de vous rendre au topic créé à cet effet !

 

KSP Weekly : On se rapproche de plus en plus de la 1.5

dimanche, octobre 7th, 2018

Ces dernières semaines nous avons eu droit à 4 nouveaux KSP Weekly tandis que nous nous rapprochons de plus en plus de la 1.5 ! (vous aussi vous êtes impatients ?)

Commençons par le plus vieux KSP Weekly en date :

Petit ajout sympa que l’équipe de développement nous a fait : des astéroïdes qui apparaissent sur une trajectoire de collision avec des planètes ! https://gfycat.com/fr/ConfusedBadCleanerwrasse

(trop cool, un simulateur d’Armageddon !)

Ensuite, les changements graphiques continuent ! La capsule Mk1 (qui ressemble désormais à une capsule Mercury) aura droit à trois variantes différentes selon vos envies. 😊

image

(Avec un renouveau de l’intérieur de la capsule)

image

Pour ceux qui sont plutôt du côté programme spatial inhabité, votre bonheur est aussi ici !

Les noyaux de sonde OKTO et OKTO 2 ont aussi subi des changements graphiques :

 

 

Deuxième KSP Weekly en date :

Toujours du côté inhabité, le noyau de cubesat subi aussi des changements graphiques, pour le mieux, avec quelques effets sympas :

image

Aussi, les panneaux structurels SP-R SP-S ET SP-T possèdent désormais des variantes de texture !

image

image

image

 

Troisième KSP Weekly en date :

Attention, attention ! Ceci n’est pas un exercice !

La mise à jour 1.5 qui se nommera : Kerbal Space Program 1.5: Dressed for Success sortira en octobre (et non ceci n’est pas un rêve ^^) !

Pour ceux qui aiment l’or et l’argent (comme dans Pokémon) le noyau de rover aura aussi ses propres variantes :

image

Une nouvelle qui va ravir les joueurs 100% stock : là où à l’époque votre temps de burn était calculé en fonction de votre dernière poussée (ce qui rendait les choses compliquées quand vous découpliez un étage), maintenant il est calculé en fonction de votre DeltaV. Vous pourrez aussi choisir quelle part de la manœuvre vous voulez effectuer (intéressant pour les challengers qui utilisent l’effet Oberth). Comme vous le voyez dans l’image ci-dessous, vous pourrez savoir quel étage de votre vaisseau pourra effectuer quelle part de la manœuvre. (Génial plus besoin de Better Burn Time !)

image

Pour ceux qui ont le DLC on ne vous a pas oublié ! Le module de service SM-18 a subi des petits changements, dans la lignée des précédentes :

https://gfycat.com/KindlyWeeklyBlackfootedferret

 

Dernier KSP Weekly en date :

Pour ceux qui ont toujours voulu une nouvelle combinaison pour vos petits Kerbals, vos vœux sont exaucés !

image

(si vous voulez voir la combinaison en action : https://gfycat.com/fr/DeterminedGiganticBongo)

Les réservoirs de carburants ont aussi eu droit à des améliorations graphiques. Désormais ils possèdent quatre variantes de couleur (dont une qui nous rappelle la fusée Soyouz 😁) :

image

Et une nouveauté qu’on attendait pas du tout, en plus du fait que les boosters à carburant solide ont 3 variantes de couleur désormais, les boosters possèdent une enveloppe (un peu comme les moteurs à ergol liquide), ce qui changera un peu l’esthétique de vos fusées !

image

Oh et aussi le noyau de sonde Stayputnik est devenu un peu plus « réaliste » si on peut dire ça comme ça :

 image

Maintenant c’est l’heure de parler du futur de KSP et de ses mises à jour, qui est assez triste pour certains moddeurs. L’équipe de développement a annoncé qu’après la sortie de la 1.5, les mises à jour sortiront à un rythme effréné d’une tous les trois mois. Mais heureusement, ils ont aussi dit qu’ils bosseront dur pour limiter l’impact de ces mises à jours sur les mods ! (ahah, je vous ai fait peur hein ?)

C’est ainsi que se termine cet article sur les news KSP, j’espère qu’il vous aura plu et je vous dis à bientôt ! 😃

Sources : toutes les sources proviennent du site officiel de Kerbal Space Program. 

https://www.kerbalspaceprogram.com/en/